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The synchronization threshold in the general form of a one-way coupled time-delayed system is discussed.
Based on the Krasovskii-Lyapunov theory, the deduction process and the application range of the synchroni-
zation threshold are given. In addition, a misuse of the synchronization threshold is presented and is illustrated
by an example.
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I. INTRODUCTION

The synchronization of chaotic systems has been consid-
ered a promising research area �1,2�. The reproducibility of
chaotic trajectories through chaotic motion synchronization,
together with the unpredictability and randomlike appear-
ance of chaotic trajectories, has been proposed for secure
communication applications. In particular, the positive
Lyapunov exponents in a time-delayed chaotic system are
unlimited. Research on the synchronization of chaotic sys-
tems with time delay has attracted more attention recently
�3,4�.

The second type of Lyapunov method is valid for discuss-
ing the stability of a coupled synchronization system. In this
Brief Report, for a general form of coupled chaotic system,
we discuss the construction of the Lyapunov function and the
stability threshold of synchronization.

II. SYNCHRONIZATION THRESHOLD

A general form of the identical, one-way coupled scalar
time-delayed system was considered as the following �5�:

ẋ = F�x,x�,p0� , �1a�

ẏ = F„y,y�,p0 + K�y − x�… . �1b�

The small deviations �=y−x are governed by a linear delay
differential equation

�̇ = − r�t�� + s�t���, �2�

where −r�t�= ��x+K�p�F�x ,x� , p0� and s�t�=�x�
F�x ,x� , p0�.

For system �1�, the synchronization thresholds of a
coupled time-delayed chaotic system by two different ana-
lytical approaches were investigated �1�. One of them is
based on the Krasovskii-Lyapunov theory, which represents
an extension of the second Lyapunov method for the case of
time-delayed differential equations �6�.

By the Krasovskii-Lyapunov theory, a positive-defined
function for system �2� was introduced,

V�t� =
1

2
�2 + ��

−�

0

�2�t + ��d� , �3�

where ��0 is an arbitrary positive parameter. The deriva-
tive of the function V�t� along the trajectory of Eq. �2� is as
follows:

V̇�t� = − r�t��2 + s�t���� + ��2 − ���
2. �4�

If � is taken as in �5�, then

� = �s�/2 �5�

to make sure V̇�t��0, and the stability condition of Eq. �2� is
obtained in the form

r�t� � �s�t�� . �6�

Condition �6� is true for two cases: �a� when s�constant
and r�t� is variable; �b� when r�constant and s�t� is
variable. The proof presented in Ref. �5� is indeed true for
case �a�. Then � can be considered as a constant that is
independent of time. For case �b�, the right-hand side of Eq.
�4� is a negative-defined function for s2�t��−4���−r�
=−4��−r /2�2+r2. From here, it follows that r� �s�t�� �when
�=r /2�. Case �b� exactly corresponds to the example of the
coupled Mackey-Glass systems presented in Ref. �5�. But for
the general case, condition �5� is unsuitable and condition �6�
is incorrect, because ��0 is an arbitrary positive parameter,
and once it is given, it is a positive constant scalar. More-
over, s and r are variables, and thus �= �s � /2 or �=r /2 is a
function of t. It conflicts with ��0 being a positive constant
scalar. In the deduction of condition �5�, if � is considered as
a function of t, the derivative of � should be considered in

the expression of V̇�t�.
Suppose �=g�t��0; then,

V =
1

2
�2�t� + g�t��

−�

0

�2�t + 	�d	 �7�

and
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V̇ = �̇�t���t� + ġ�t��
−�

0

�2�t − 	�d	 + g�t���2�t� − �2�t − ���

= − r�t��2 + s�t���� + g�t��2 − g�t���
2

+ ġ�t��
−�

0

�2�t + ��d� .

If ġ�t�
0, for arbitrary t, we have

V̇�t� 
 − r�t��2 + s�t���� + g�t��2 − g�t���
2

= �− r�t� + s2�t�/4g�t� + g�t���2

− g�t����
2 − s�t����/g�t� + �s�t��/2g�t��2�

= − �r�t� − s2�t�/4g�t� − g�t���2 − g�t���� − s�t��/2g�t��2


 − �r�t� − s2�t�/4g�t� − g�t���2.

We obtain the stability condition as

r�t� − s2�t�/4g�t� + g�t� � 0 �8�

i.e., r�t��s2�t� /4g�t�+g�t�.
Considering the minimum of function s2�t� /4g�t�+g�t�,

we take �supposing s�t��0�

g�t� = �s�t��/2 �9�

and

r�t� � s2�t�/4g�t� + g�t� = �s�t�� . �10�

If s�t�=0, then r�t��0 is also the stability condition for sys-
tem �2�. Equation �10� is the same as �6� under the condition
of the derivative of g�t�—i.e., �s�t� � /2, which is nonpositive.
If the nonpositive condition of the derivative is not satisfied,
the stability condition is not as in Eq. �10�. For example, if
we take r�t�= 1

�2 , s�t�=− 1
�2+1

, then r�t�� �s�t�� holds, but sys-
tem �2� is unstable as −�

1
�2 −�

1
�2+1

=0 has no solution. There
is no equilibrium point in system �2�; nor is it stable. For a
system with r�t�= 1

�2+0.0010
, s�t�=− 1

�2+0.0011
and the initial

condition of �=−0.5�−�
 t
0�, here �=1, we obtain the
waveform diagram as in Fig. 1. The waveform indicates that
the system is unstable.

From the above discussion, we conclude that, for the gen-
eral case when both r�t� and s�t� are time-dependent func-
tions, the criterion r�t�� �s�t�� is not suitable.

III. CONCLUSION

In this Brief Report, we investigated the synchronization
of a rather general form of the identical, one-way coupled
scalar time-delayed system. The synchronization thresholds
of the coupled system are obtained, and the special cases
were discussed. The example presented shows that when
both r�t� and s�t� are time-dependent functions, the criterion
r�t�� �s�t�� is not suitable for the general case. On the other
hand, for some systems �5,7�, when �s�t� � 
M holds, we
could take g�t�=M /2 and the stability condition is r�t��M.
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FIG. 1. Waveform of system �2� with r�t�= 1
�2+0.0010

, s�t�
=− 1

�2+0.0011
.
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