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Synchronization threshold of a coupled time-delay system
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The synchronization threshold in the general form of a one-way coupled time-delayed system is discussed.
Based on the Krasovskii-Lyapunov theory, the deduction process and the application range of the synchroni-
zation threshold are given. In addition, a misuse of the synchronization threshold is presented and is illustrated

by an example.
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I. INTRODUCTION

The synchronization of chaotic systems has been consid-
ered a promising research area [1,2]. The reproducibility of
chaotic trajectories through chaotic motion synchronization,
together with the unpredictability and randomlike appear-
ance of chaotic trajectories, has been proposed for secure
communication applications. In particular, the positive
Lyapunov exponents in a time-delayed chaotic system are
unlimited. Research on the synchronization of chaotic sys-
tems with time delay has attracted more attention recently
[3,4].

The second type of Lyapunov method is valid for discuss-
ing the stability of a coupled synchronization system. In this
Brief Report, for a general form of coupled chaotic system,
we discuss the construction of the Lyapunov function and the
stability threshold of synchronization.

II. SYNCHRONIZATION THRESHOLD

A general form of the identical, one-way coupled scalar
time-delayed system was considered as the following [5]:

)Ef:F(.X,.X,ppo), (13)

y=F(,y»po+K(y—-x)). (1b)

The small deviations A=y—x are governed by a linear delay
differential equation

A=—r()A+s()A,, ()

where —r(t)=(d,+Kd,)F(x,x,,po) and s(1)=0d, F(x,x.,po).

For system (1), the synchronization thresholds of a
coupled time-delayed chaotic system by two different ana-
lytical approaches were investigated [1]. One of them is
based on the Krasovskii-Lyapunov theory, which represents
an extension of the second Lyapunov method for the case of
time-delayed differential equations [6].

By the Krasovskii-Lyapunov theory, a positive-defined
function for system (2) was introduced,
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V(1) = %AZ + f A?(t+ 6)dé, (3)
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where ©>0 is an arbitrary positive parameter. The deriva-
tive of the function V(z) along the trajectory of Eq. (2) is as
follows:

V(1) = = r(DA% + s() AN+ uA? - uA?, (4)
If w is taken as in [5], then
w=sl2 (5)

to make sure V(r) <0, and the stability condition of Eq. (2) is
obtained in the form

r(t) > |s(r)]. (6)

Condition (6) is true for two cases: (a) when s=constant
and r(r) is variable; (b) when r=constant and s(7) is
variable. The proof presented in Ref. [5] is indeed true for
case (a). Then w can be considered as a constant that is
independent of time. For case (b), the right-hand side of Eq.
(4) is a negative-defined function for s%(r) <—4u(u—r)
=—4(u—r/2)*+7r>. From here, it follows that »>|s(z)| (when
u=r/2). Case (b) exactly corresponds to the example of the
coupled Mackey-Glass systems presented in Ref. [5]. But for
the general case, condition (5) is unsuitable and condition (6)
is incorrect, because w >0 is an arbitrary positive parameter,
and once it is given, it is a positive constant scalar. More-
over, s and r are variables, and thus w=|s|/2 or u=r/2 is a
function of 7. It conflicts with >0 being a positive constant
scalar. In the deduction of condition (5), if w is considered as
a function of ¢, the derivative of w should be considered in

the expression of V(z).
Suppose u=g(r)>0; then,

0
V=240 440 f A1+ £)de )

and
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0
V=AMA®D) + (1) f At - &dé+ g(D[AX 1) - AX(t - 7)]
=—r(A% + s() AA .+ g()A% — g(1) A2
0
+ (1) f A1+ 0)do.

If ¢(¢) =0, for arbitrary ¢, we have

V(1) = — r(DA% + s()AA, + g(DA? — g(1) A2
=[—r(0) + s*()/4g(1) + g(1)]A°
— g(O[A% = s()AAJg(1) + (s(1)A/2g(1))*]
=—[r(t) - s*(0)/4g(1) - g(D]A* - g()[A, - s(1)A/2g(D) ]
= —[r(1) - s*()/4g(1) - g()]A°.
We obtain the stability condition as
r(t) — s(1)/4g (1) + g(1) > 0 (8)

ie., r(t)>s%(t)/14g()+g(1).
Considering the minimum of function s%(r)/4g(1)+g(1),
we take [supposing s(7) # 0]

g(t)=|s())12 )

and

r(t) > s*(1)/4g(t) + g(t) = |s(t)|. (10)

If s(r)=0, then r(r) >0 is also the stability condition for sys-
tem (2). Equation (10) is the same as (6) under the condition
of the derivative of g(f)—i.e., |s(¢)|/2, which is nonpositive.
If the nonpositive condition of the derivative is not satisfied,
the stability condition is not as in Eq. (10). For example, if
we take r(t):t, s(t):—ﬁ, then r(r) >|s(¢)| holds, but sys-
tem (2) is unstable as —Ai—A 12,7 =0 has no solution. There
is no equilibrium point in system (2); nor is it stable. For a
system with r(t)zm, s(t):—m and the initial
condition of A=-0.5(-7=¢=0), here 7=1, we obtain the
waveform diagram as in Fig. 1. The waveform indicates that
the system is unstable.
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FIG{ 1. Waveform of system (2) with r(t)—A2+0_00]0, s(t)
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From the above discussion, we conclude that, for the gen-
eral case when both r(¢) and s(¢) are time-dependent func-
tions, the criterion r(¢) > |s(¢)| is not suitable.

III. CONCLUSION

In this Brief Report, we investigated the synchronization
of a rather general form of the identical, one-way coupled
scalar time-delayed system. The synchronization thresholds
of the coupled system are obtained, and the special cases
were discussed. The example presented shows that when
both r(¢) and s(¢) are time-dependent functions, the criterion
r(t)>|s(#)| is not suitable for the general case. On the other
hand, for some systems [5,7], when [s(f)| =M holds, we
could take g(r)=M/2 and the stability condition is r(z) > M.
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